Fast Risk Assessment in Power Grids through Novel Gaussian Process and Active Learning

15 Aug 2023  ·  Parikshit Pareek, Deepjyoti Deka, Sidhant Misra ·

This paper presents a graph-structured Gaussian process (GP) model for data-driven risk assessment of critical voltage constraints. The proposed GP is based on a novel kernel, named the vertex-degree kernel (VDK), that decomposes the voltage-load relationship based on the network graph. To estimate the GP efficiently, we propose a novel active learning scheme that leverages the additive structure of VDK. Further, we prove a probabilistic bound on the error in risk estimation using VDK-GP model that demonstrates that it is statistically comparable to using standard AC power flow (AC-PF), but does not require computing a large number of ACPF solutions. Simulations demonstrate that the proposed VDK-GP achieves more than two fold sample complexity reduction, compared to a generic GP on medium scale 500-Bus and large scale 1354-Bus power systems. Moreover, active learning achieves an impressive reduction of over 15 times in comparison to the time complexity of Monte-Carlo simulations (MCS), and have risk estimation error of order 1E-4 for both 500-Bus and 1354-Bus system, demonstrating its superior efficiency in risk estimation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods