GraphMU: Repairing Robustness of Graph Neural Networks via Machine Unlearning

19 Jun 2024  ·  Tao Wu, Xinwen Cao, Chao Wang, Shaojie Qiao, Xingping Xian, Lin Yuan, Canyixing Cui, Yanbing Liu ·

Graph Neural Networks (GNNs) have demonstrated significant application potential in various fields. However, GNNs are still vulnerable to adversarial attacks. Numerous adversarial defense methods on GNNs are proposed to address the problem of adversarial attacks. However, these methods can only serve as a defense before poisoning, but cannot repair poisoned GNN. Therefore, there is an urgent need for a method to repair poisoned GNN. In this paper, we address this gap by introducing the novel concept of model repair for GNNs. We propose a repair framework, Repairing Robustness of Graph Neural Networks via Machine Unlearning (GraphMU), which aims to fine-tune poisoned GNN to forget adversarial samples without the need for complete retraining. We also introduce a unlearning validation method to ensure that our approach effectively forget specified poisoned data. To evaluate the effectiveness of GraphMU, we explore three fine-tuned subgraph construction scenarios based on the available perturbation information: (i) Known Perturbation Ratios, (ii) Known Complete Knowledge of Perturbations, and (iii) Unknown any Knowledge of Perturbations. Our extensive experiments, conducted across four citation datasets and four adversarial attack scenarios, demonstrate that GraphMU can effectively restore the performance of poisoned GNN.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here