GraspARL: Dynamic Grasping via Adversarial Reinforcement Learning

4 Mar 2022  ·  Tianhao Wu, Fangwei Zhong, Yiran Geng, Hongchen Wang, Yongjian Zhu, Yizhou Wang, Hao Dong ·

Grasping moving objects, such as goods on a belt or living animals, is an important but challenging task in robotics. Conventional approaches rely on a set of manually defined object motion patterns for training, resulting in poor generalization to unseen object trajectories. In this work, we introduce an adversarial reinforcement learning framework for dynamic grasping, namely GraspARL. To be specific. we formulate the dynamic grasping problem as a 'move-and-grasp' game, where the robot is to pick up the object on the mover and the adversarial mover is to find a path to escape it. Hence, the two agents play a min-max game and are trained by reinforcement learning. In this way, the mover can auto-generate diverse moving trajectories while training. And the robot trained with the adversarial trajectories can generalize to various motion patterns. Empirical results on the simulator and real-world scenario demonstrate the effectiveness of each and good generalization of our method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here