Domain Adaptation for Real-Time Student Performance Prediction

Increasingly fast development and update cycle of online course contents, and diverse demographics of students in each online classroom, make student performance prediction in real-time (before the course finishes) and/or on curriculum without specific historical performance data available interesting topics for both industrial research and practical needs. In this research, we tackle the problem of real-time student performance prediction with on-going courses in a domain adaptation framework, which is a system trained on students' labeled outcome from one set of previous coursework but is meant to be deployed on another... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet