Ground Truth Free Denoising by Optimal Transport

3 Jul 2020Sören DittmerCarola-Bibiane SchönliebPeter Maass

We present a learned unsupervised denoising method for arbitrary types of data, which we explore on images and one-dimensional signals. The training is solely based on samples of noisy data and examples of noise, which -- critically -- do not need to come in pairs... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet