Capturing semantic relations between sentences, such as entailment, is a long-standing challenge for computational semantics. Logic-based models analyse entailment in terms of possible worlds (interpretations, or situations) where a premise P entails a hypothesis H iff in all worlds where P is true, H is also true. Statistical models view this relationship probabilistically, addressing it in terms of whether a human would likely infer H from P. In this paper, we wish to bridge these two perspectives, by arguing for a visually-grounded version of the Textual Entailment task. Specifically, we ask whether models can perform better if, in addition to P and H, there is also an image (corresponding to the relevant "world" or "situation"). We use a multimodal version of the SNLI dataset (Bowman et al., 2015) and we compare "blind" and visually-augmented models of textual entailment. We show that visual information is beneficial, but we also conduct an in-depth error analysis that reveals that current multimodal models are not performing "grounding" in an optimal fashion.

PDF Abstract COLING 2018 PDF COLING 2018 Abstract

Results from the Paper

Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Natural Language Inference V-SNLI V-BiMPM Accuracy 86.99 # 2
Natural Language Inference V-SNLI BiMPM Accuracy 86.41 # 3


No methods listed for this paper. Add relevant methods here