Grounding learning of modifier dynamics: An application to color naming

IJCNLP 2019  ·  Xudong Han, Philip Schulz, Trevor Cohn ·

Grounding is crucial for natural language understanding. An important subtask is to understand modified color expressions, such as 'dirty blue'... We present a model of color modifiers that, compared with previous additive models in RGB space, learns more complex transformations. In addition, we present a model that operates in the HSV color space. We show that certain adjectives are better modeled in that space. To account for all modifiers, we train a hard ensemble model that selects a color space depending on the modifier color pair. Experimental results show significant and consistent improvements compared to the state-of-the-art baseline model. read more

PDF Abstract IJCNLP 2019 PDF IJCNLP 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here