Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning

14 Nov 2016Quanshi ZhangRuiming CaoYing Nian WuSong-Chun Zhu

This paper proposes a learning strategy that extracts object-part concepts from a pre-trained convolutional neural network (CNN), in an attempt to 1) explore explicit semantics hidden in CNN units and 2) gradually grow a semantically interpretable graphical model on the pre-trained CNN for hierarchical object understanding. Given part annotations on very few (e.g., 3-12) objects, our method mines certain latent patterns from the pre-trained CNN and associates them with different semantic parts... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.