GTT-Net: Learned Generalized Trajectory Triangulation

ICCV 2021  ·  Xiangyu Xu, Enrique Dunn ·

We present GTT-Net, a supervised learning framework for the reconstruction of sparse dynamic 3D geometry. We build on a graph-theoretic formulation of the generalized trajectory triangulation problem, where non-concurrent multi-view imaging geometry is known but global image sequencing is not provided. GTT-Net learns pairwise affinities modeling the spatio-temporal relationships among our input observations and leverages them to determine 3D geometry estimates. Experiments reconstructing 3D motion-capture sequences show GTT-Net outperforms the state of the art in terms of accuracy and robustness. Within the context of articulated motion reconstruction, our proposed architecture is 1) able to learn and enforce semantic 3D motion priors for shared training and test domains, while being 2) able to generalize its performance across different training and test domains. Moreover, GTT-Net provides a computationally streamlined framework for trajectory triangulation with applications to multi-instance reconstruction and event segmentation.

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here