Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-$1$ Updates

21 Feb 2014  ·  Animashree Anandkumar, Rong Ge, Majid Janzamin ·

In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-$1$ update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank $k$ in $d$ dimensions, when $k=o \bigl( d^{1.5} \bigr)$ and the tensor components are incoherent. Thus, we can recover overcomplete tensor decomposition. We also strengthen the results to global convergence guarantees under stricter rank condition $k \le \beta d$ (for arbitrary constant $\beta > 1$) through a simple initialization procedure where the algorithm is initialized by top singular vectors of random tensor slices. Furthermore, the approximate local convergence guarantees for $p$-th order tensors are also provided under rank condition $k=o \bigl( d^{p/2} \bigr)$. The guarantees also include tight perturbation analysis given noisy tensor.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here