Guarantees for Greedy Maximization of Non-submodular Functions with Applications

We investigate the performance of the standard Greedy algorithm for cardinality constrained maximization of non-submodular nondecreasing set functions. While there are strong theoretical guarantees on the performance of Greedy for maximizing submodular functions, there are few guarantees for non-submodular ones. However, Greedy enjoys strong empirical performance for many important non-submodular functions, e.g., the Bayesian A-optimality objective in experimental design. We prove theoretical guarantees supporting the empirical performance. Our guarantees are characterized by a combination of the (generalized) curvature $\alpha$ and the submodularity ratio $\gamma$. In particular, we prove that Greedy enjoys a tight approximation guarantee of $\frac{1}{\alpha}(1- e^{-\gamma\alpha})$ for cardinality constrained maximization. In addition, we bound the submodularity ratio and curvature for several important real-world objectives, including the Bayesian A-optimality objective, the determinantal function of a square submatrix and certain linear programs with combinatorial constraints. We experimentally validate our theoretical findings for both synthetic and real-world applications.

PDF Abstract ICML 2017 PDF ICML 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here