ReLSO: A Transformer-based Model for Latent Space Optimization and Generation of Proteins

The development of powerful natural language models have increased the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labeled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder which features a highly structured latent space that is trained to jointly generate sequences as well as predict fitness. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and novel approach for efficient fitness landscape traversal. Using ReLSO, we explicitly model the sequence-function landscape of large labeled datasets and generate new molecules by optimizing within the latent space using gradient-based methods. We evaluate this approach on several publicly-available protein datasets, including variant sets of anti-ranibizumab and GFP. We observe a greater sequence optimization efficiency (increase in fitness per optimization step) by ReLSO compared to other approaches, where ReLSO more robustly generates high-fitness sequences. Furthermore, the attention-based relationships learned by the jointly-trained ReLSO models provides a potential avenue towards sequence-level fitness attribution information.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods