Guided Policy Exploration for Markov Decision Processes using an Uncertainty-Based Value-of-Information Criterion

5 Feb 2018  ·  Isaac J. Sledge, Matthew S. Emigh, Jose C. Principe ·

Reinforcement learning in environments with many action-state pairs is challenging. At issue is the number of episodes needed to thoroughly search the policy space. Most conventional heuristics address this search problem in a stochastic manner. This can leave large portions of the policy space unvisited during the early training stages. In this paper, we propose an uncertainty-based, information-theoretic approach for performing guided stochastic searches that more effectively cover the policy space. Our approach is based on the value of information, a criterion that provides the optimal trade-off between expected costs and the granularity of the search process. The value of information yields a stochastic routine for choosing actions during learning that can explore the policy space in a coarse to fine manner. We augment this criterion with a state-transition uncertainty factor, which guides the search process into previously unexplored regions of the policy space.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here