Guidestar-free image-guided wavefront-shaping

8 Jul 2020  ·  Tomer Yeminy, Ori Katz ·

Optical imaging through scattering media is a fundamental challenge in many applications. Recently, substantial breakthroughs such as imaging through biological tissues and looking around corners have been obtained by the use of wavefront-shaping approaches. However, these require an implanted guide-star for determining the wavefront correction, controlled coherent illumination, and most often raster scanning of the shaped focus. Alternative novel computational approaches that exploit speckle correlations, avoid guide-stars and wavefront control but are limited to small two-dimensional objects contained within the memory-effect correlations range. Here, we present a new concept, image-guided wavefront-shaping, allowing non-invasive, guidestar-free, widefield, incoherent imaging through highly scattering layers, without illumination control. Most importantly, the wavefront-correction is found even for objects that are larger than the memory-effect range, by blindly optimizing image-quality metrics. We demonstrate imaging of extended objects through highly-scattering layers and multi-core fibers, paving the way for non-invasive imaging in various applications, from microscopy to endoscopy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here