Guiding Extractive Summarization with Question-Answering Rewards

NAACL 2019  ·  Kristjan Arumae, Fei Liu ·

Highlighting while reading is a natural behavior for people to track salient content of a document. It would be desirable to teach an extractive summarizer to do the same. However, a major obstacle to the development of a supervised summarizer is the lack of ground-truth. Manual annotation of extraction units is cost-prohibitive, whereas acquiring labels by automatically aligning human abstracts and source documents can yield inferior results. In this paper we describe a novel framework to guide a supervised, extractive summarization system with question-answering rewards. We argue that quality summaries should serve as a document surrogate to answer important questions, and such question-answer pairs can be conveniently obtained from human abstracts. The system learns to promote summaries that are informative, fluent, and perform competitively on question-answering. Our results compare favorably with those reported by strong summarization baselines as evaluated by automatic metrics and human assessors.

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here