Hacking VMAF and VMAF NEG: vulnerability to different preprocessing methods

9 Jul 2021  ·  Maksim Siniukov, Anastasia Antsiferova, Dmitriy Kulikov, Dmitriy Vatolin ·

Video-quality measurement plays a critical role in the development of video-processing applications. In this paper, we show how video preprocessing can artificially increase the popular quality metric VMAF and its tuning-resistant version, VMAF NEG. We propose a pipeline that tunes processing-algorithm parameters to increase VMAF by up to 218.8%. A subjective comparison revealed that for most preprocessing methods, a video's visual quality drops or stays unchanged. We also show that some preprocessing methods can increase VMAF NEG scores by up to 23.6%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here