Hamiltonian Dynamics for Real-World Shape Interpolation

ECCV 2020  ·  Marvin Eisenberger, Daniel Cremers ·

We revisit the classical problem of 3D shape interpolation and propose a novel, physically plausible approach based on Hamiltonian dynamics. While most prior work focuses on synthetic input shapes, our formulation is designed to be applicable to real-world scans with imperfect input correspondences and various types of noise. To that end, we use recent progress on dynamic thin shell simulation and divergence-free shape deformation and combine them to address the inverse problem of finding a plausible intermediate sequence for two input shapes. In comparison to prior work that mainly focuses on small distortion of consecutive frames, we explicitly model volume preservation and momentum conservation, as well as an anisotropic local distortion model. We argue that, in order to get a robust interpolation for imperfect inputs, we need to model the input noise explicitly which results in an alignment based formulation. Finally, we show a qualitative and quantitative improvement over prior work on a broad range of synthetic and scanned data. Besides being more robust to noisy inputs, our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here