HandNeRF: Neural Radiance Fields for Animatable Interacting Hands

CVPR 2023  ·  Zhiyang Guo, Wengang Zhou, Min Wang, Li Li, Houqiang Li ·

We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands, enabling the rendering of photo-realistic images and videos for gesture animation from arbitrary views. Given multi-view images of a single hand or interacting hands, an off-the-shelf skeleton estimator is first employed to parameterize the hand poses. Then we design a pose-driven deformation field to establish correspondence from those different poses to a shared canonical space, where a pose-disentangled NeRF for one hand is optimized. Such unified modeling efficiently complements the geometry and texture cues in rarely-observed areas for both hands. Meanwhile, we further leverage the pose priors to generate pseudo depth maps as guidance for occlusion-aware density learning. Moreover, a neural feature distillation method is proposed to achieve cross-domain alignment for color optimization. We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results both qualitatively and quantitatively on the large-scale InterHand2.6M dataset.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods