Handwritten Script Identification from Text Lines

16 Sep 2020  ·  Pawan Kumar Singh, Iman Chatterjee, Ram Sarkar, Mita Nasipuri ·

In a multilingual country like India where 12 different official scripts are in use, automatic identification of handwritten script facilitates many important applications such as automatic transcription of multilingual documents, searching for documents on the web/digital archives containing a particular script and for the selection of script specific Optical Character Recognition (OCR) system in a multilingual environment. In this paper, we propose a robust method towards identifying scripts from the handwritten documents at text line-level... The recognition is based upon features extracted using Chain Code Histogram (CCH) and Discrete Fourier Transform (DFT). The proposed method is experimented on 800 handwritten text lines written in seven Indic scripts namely, Gujarati, Kannada, Malayalam, Oriya, Tamil, Telugu, Urdu along with Roman script and yielded an average identification rate of 95.14% using Support Vector Machine (SVM) classifier. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here