Hardware Implementation of Task-based Quantization in Multi-user Signal Recovery

Quantization plays a critical role in digital signal processing systems, allowing the representation of continuous amplitude signals with a finite number of bits. However, accurately representing signals requires a large number of quantization bits, which causes severe cost, power consumption, and memory burden. A promising way to address this issue is task-based quantization. By exploiting the task information for the overall system design, task-based quantization can achieve satisfying performance with low quantization costs. In this work, we apply task-based quantization to multi-user signal recovery and present a hardware prototype implementation. The prototype consists of a tailored configurable combining board, and a software-based processing and demonstration system. Through experiments, we verify that with proper design, the task-based quantization achieves a reduction of 25 fold in memory by reducing from 16 receivers with 16 bits each to 2 receivers with 5 bits each, without compromising signal recovery performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here