Harnessing disordered quantum dynamics for machine learning

26 Feb 2016  ·  Keisuke Fujii, Kohei Nakajima ·

Quantum computer has an amazing potential of fast information processing. However, realisation of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a novel platform, quantum reservoir computing, to solve these issues successfully by exploiting natural quantum dynamics, which is ubiquitous in laboratories nowadays, for machine learning. In this framework, nonlinear dynamics including classical chaos can be universally emulated in quantum systems. A number of numerical experiments show that quantum systems consisting of at most seven qubits possess computational capabilities comparable to conventional recurrent neural networks of 500 nodes. This discovery opens up a new paradigm for information processing with artificial intelligence powered by quantum physics.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here