Hate Speech Detection Based on Sentiment Knowledge Sharing

The wanton spread of hate speech on the internet brings great harm to society and families. It is urgent to establish and improve automatic detection and active avoidance mechanisms for hate speech. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. In other words, getting more affective features from other affective resources will significantly affect the performance of hate speech detection. In this paper, we propose a hate speech detection framework based on sentiment knowledge sharing. While extracting the affective features of the target sentence itself, we make better use of the sentiment features from external resources, and finally fuse features from different feature extraction units to detect hate speech. Experimental results on two public datasets demonstrate the effectiveness of our model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here