Health-LLM: Personalized Retrieval-Augmented Disease Prediction System

Recent advancements in artificial intelligence (AI), especially large language models (LLMs), have significantly advanced healthcare applications and demonstrated potentials in intelligent medical treatment. However, there are conspicuous challenges such as vast data volumes and inconsistent symptom characterization standards, preventing full integration of healthcare AI systems with individual patients' needs. To promote professional and personalized healthcare, we propose an innovative framework, Heath-LLM, which combines large-scale feature extraction and medical knowledge trade-off scoring. Compared to traditional health management applications, our system has three main advantages: (1) It integrates health reports and medical knowledge into a large model to ask relevant questions to large language model for disease prediction; (2) It leverages a retrieval augmented generation (RAG) mechanism to enhance feature extraction; (3) It incorporates a semi-automated feature updating framework that can merge and delete features to improve accuracy of disease prediction. We experiment on a large number of health reports to assess the effectiveness of Health-LLM system. The results indicate that the proposed system surpasses the existing ones and has the potential to significantly advance disease prediction and personalized health management. The code is available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here