Helping the Weak Makes You Strong: Simple Multi-Task Learning Improves Non-Autoregressive Translators

11 Nov 2022  ·  Xinyou Wang, Zaixiang Zheng, ShuJian Huang ·

Recently, non-autoregressive (NAR) neural machine translation models have received increasing attention due to their efficient parallel decoding. However, the probabilistic framework of NAR models necessitates conditional independence assumption on target sequences, falling short of characterizing human language data. This drawback results in less informative learning signals for NAR models under conventional MLE training, thereby yielding unsatisfactory accuracy compared to their autoregressive (AR) counterparts. In this paper, we propose a simple and model-agnostic multi-task learning framework to provide more informative learning signals. During training stage, we introduce a set of sufficiently weak AR decoders that solely rely on the information provided by NAR decoder to make prediction, forcing the NAR decoder to become stronger or else it will be unable to support its weak AR partners. Experiments on WMT and IWSLT datasets show that our approach can consistently improve accuracy of multiple NAR baselines without adding any additional decoding overhead.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here