HeMI: Multi-view Embedding in Heterogeneous Graphs

14 Sep 2021  ·  Costas Mavromatis, George Karypis ·

Many real-world graphs involve different types of nodes and relations between nodes, being heterogeneous by nature. The representation learning of heterogeneous graphs (HGs) embeds the rich structure and semantics of such graphs into a low-dimensional space and facilitates various data mining tasks, such as node classification, node clustering, and link prediction. In this paper, we propose a self-supervised method that learns HG representations by relying on knowledge exchange and discovery among different HG structural semantics (meta-paths). Specifically, by maximizing the mutual information of meta-path representations, we promote meta-path information fusion and consensus, and ensure that globally shared semantics are encoded. By extensive experiments on node classification, node clustering, and link prediction tasks, we show that the proposed self-supervision both outperforms and improves competing methods by 1% and up to 10% for all tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here