Heterogeneous Similarity Graph Neural Network on Electronic Health Records

17 Jan 2021  ·  Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, Philip S. Yu ·

Mining Electronic Health Records (EHRs) becomes a promising topic because of the rich information they contain. By learning from EHRs, machine learning models can be built to help human experts to make medical decisions and thus improve healthcare quality. Recently, many models based on sequential or graph models are proposed to achieve this goal. EHRs contain multiple entities and relations and can be viewed as a heterogeneous graph. However, previous studies ignore the heterogeneity in EHRs. On the other hand, current heterogeneous graph neural networks cannot be simply used on an EHR graph because of the existence of hub nodes in it. To address this issue, we propose Heterogeneous Similarity Graph Neural Network (HSGNN) analyze EHRs with a novel heterogeneous GNN. Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN. The preprocessing method normalizes edges and splits the EHR graph into multiple homogeneous graphs while each homogeneous graph contains partial information of the original EHR graph. The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction. Experimental results show that HSGNN outperforms other baselines in the diagnosis prediction task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods