Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning

30 Oct 2019  ·  Bindya Venkatesh, Jayaraman J. Thiagarajan ·

The role of uncertainty quantification (UQ) in deep learning has become crucial with growing use of predictive models in high-risk applications. Though a large class of methods exists for measuring deep uncertainties, in practice, the resulting estimates are found to be poorly calibrated, thus making it challenging to translate them into actionable insights. A common workaround is to utilize a separate recalibration step, which adjusts the estimates to compensate for the miscalibration. Instead, we propose to repurpose the heteroscedastic regression objective as a surrogate for calibration and enable any existing uncertainty estimator to be inherently calibrated. In addition to eliminating the need for recalibration, this also regularizes the training process. Using regression experiments, we demonstrate the effectiveness of the proposed heteroscedastic calibration with two popular uncertainty estimators.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here