Heuristics for Exact Nonnegative Matrix Factorization

The exact nonnegative matrix factorization (exact NMF) problem is the following: given an $m$-by-$n$ nonnegative matrix $X$ and a factorization rank $r$, find, if possible, an $m$-by-$r$ nonnegative matrix $W$ and an $r$-by-$n$ nonnegative matrix $H$ such that $X = WH$. In this paper, we propose two heuristics for exact NMF, one inspired from simulated annealing and the other from the greedy randomized adaptive search procedure... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet