Hiding Behind Backdoors: Self-Obfuscation Against Generative Models

24 Jan 2022  ·  Siddhartha Datta, Nigel Shadbolt ·

Attack vectors that compromise machine learning pipelines in the physical world have been demonstrated in recent research, from perturbations to architectural components. Building on this work, we illustrate the self-obfuscation attack: attackers target a pre-processing model in the system, and poison the training set of generative models to obfuscate a specific class during inference. Our contribution is to describe, implement and evaluate a generalized attack, in the hope of raising awareness regarding the challenge of architectural robustness within the machine learning community.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here