Paper

Hierarchical Bayesian inference for community detection and connectivity of functional brain networks

Many functional magnetic resonance imaging (fMRI) studies rely on estimates of hierarchically organised brain networks whose segregation and integration reflect the dynamic transitions of latent cognitive states. However, most existing methods for estimating the community structure of networks from both individual and group-level analysis neglect the variability between subjects and lack validation. In this paper, we develop a new multilayer community detection method based on Bayesian latent block modelling. The method can robustly detect the group-level community structure of weighted functional networks that give rise to hidden brain states with an unknown number of communities and retain the variability of individual networks. For validation, we propose a new community structure-based multivariate Gaussian generative model convolved with haemodynamic response function to simulate synthetic fMRI signal. Our result shows that the inferred community memberships using hierarchical Bayesian analysis are consistent with the predefined node labels in the generative model. The method is also tested using real working memory task-fMRI data of 100 unrelated healthy subjects from the Human Connectome Project. The results show distinctive community structures and subtle connectivity patterns between 2-back, 0-back, and fixation conditions, which may reflect cognitive and behavioural states under working memory task conditions.

Results in Papers With Code
(↓ scroll down to see all results)