Hierarchical Clustering Beyond the Worst-Case

Hiererachical clustering, that is computing a recursive partitioning of a dataset to obtain clusters at increasingly finer granularity is a fundamental problem in data analysis. Although hierarchical clustering has mostly been studied through procedures such as linkage algorithms, or top-down heuristics, rather than as optimization problems, recently Dasgupta [1] proposed an objective function for hierarchical clustering and initiated a line of work developing algorithms that explicitly optimize an objective (see also [2, 3, 4]). In this paper, we consider a fairly general random graph model for hierarchical clustering, called the hierarchical stochastic blockmodel (HSBM), and show that in certain regimes the SVD approach of McSherry [5] combined with specific linkage methods results in a clustering that give an O(1)-approximation to Dasgupta’s cost function. We also show that an approach based on SDP relaxations for balanced cuts based on the work of Makarychev et al. [6], combined with the recursive sparsest cut algorithm of Dasgupta, yields an O(1) approximation in slightly larger regimes and also in the semi-random setting, where an adversary may remove edges from the random graph generated according to an HSBM. Finally, we report empirical evaluation on synthetic and real-world data showing that our proposed SVD-based method does indeed achieve a better cost than other widely-used heurstics and also results in a better classification accuracy when the underlying problem was that of multi-class classification.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here