Hierarchical Genetic Algorithms with evolving objective functions

1 Dec 2018  ·  Harshavardhan Kamarthi, Kousik Krishnan ·

We propose a framework of genetic algorithms which use multi-level hierarchies to solve an optimization problem by searching over the space of simpler objective functions. We solve a variant of Travelling Salesman Problem called \texttt{soft-TSP} and show that when the constraints on the overall objective function are changed the algorithm adapts to churn out solutions for the changed objective... We use this idea to speed up learning by systematically altering the constraints to find a more globally optimal solution. We also use this framework to solve polynomial regression where the actual objective function is unknown but searching over space of available objective functions yields a good approximate solution. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here