Hierarchical Reinforcement Learning: Approximating Optimal Discounted TSP Using Local Policies

13 Mar 2018  ·  Tom Zahavy, Avinatan Hasidim, Haim Kaplan, Yishay Mansour ·

In this work, we provide theoretical guarantees for reward decomposition in deterministic MDPs. Reward decomposition is a special case of Hierarchical Reinforcement Learning, that allows one to learn many policies in parallel and combine them into a composite solution... Our approach builds on mapping this problem into a Reward Discounted Traveling Salesman Problem, and then deriving approximate solutions for it. In particular, we focus on approximate solutions that are local, i.e., solutions that only observe information about the current state. Local policies are easy to implement and do not require substantial computational resources as they do not perform planning. While local deterministic policies, like Nearest Neighbor, are being used in practice for hierarchical reinforcement learning, we propose three stochastic policies that guarantee better performance than any deterministic policy. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here