High Dimensional Inference with Random Maximum A-Posteriori Perturbations

10 Feb 2016  ·  Tamir Hazan, Francesco Orabona, Anand D. Sarwate, Subhransu Maji, Tommi Jaakkola ·

This paper presents a new approach, called perturb-max, for high-dimensional statistical inference that is based on applying random perturbations followed by optimization. This framework injects randomness to maximum a-posteriori (MAP) predictors by randomly perturbing the potential function for the input... A classic result from extreme value statistics asserts that perturb-max operations generate unbiased samples from the Gibbs distribution using high-dimensional perturbations. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. However, when the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. This paper shows that the expected value of perturb-max inference with low dimensional perturbations can be used sequentially to generate unbiased samples from the Gibbs distribution. Furthermore the expected value of the maximal perturbations is a natural bound on the entropy of such perturb-max models. A measure concentration result for perturb-max values shows that the deviation of their sampled average from its expectation decays exponentially in the number of samples, allowing effective approximation of the expectation. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here