High-Dimensional Sparse Linear Bandits

NeurIPS 2020  ·  Botao Hao, Tor Lattimore, Mengdi Wang ·

Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $\Omega(n^{2/3})$ dimension-free minimax regret lower bound for sparse linear bandits in the data-poor regime where the horizon is smaller than the ambient dimension and where the feature vectors admit a well-conditioned exploration distribution. This is complemented by a nearly matching upper bound for an explore-then-commit algorithm showing that that $\Theta(n^{2/3})$ is the optimal rate in the data-poor regime. The results complement existing bounds for the data-rich regime and provide another example where carefully balancing the trade-off between information and regret is necessary. Finally, we prove a dimension-free $O(\sqrt{n})$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here