High Fidelity Semantic Shape Completion for Point Clouds using Latent Optimization

Semantic shape completion is a challenging problem in 3D computer vision where the task is to generate a complete 3D shape using a partial 3D shape as input. We propose a learning-based approach to complete incomplete 3D shapes through generative modeling and latent manifold optimization... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
AutoEncoder
Generative Models
Convolution
Convolutions
GAN
Generative Models