High-probability Bounds for Non-Convex Stochastic Optimization with Heavy Tails

NeurIPS 2021  ·  Ashok Cutkosky, Harsh Mehta ·

We consider non-convex stochastic optimization using first-order algorithms for which the gradient estimates may have heavy tails. We show that a combination of gradient clipping, momentum, and normalized gradient descent yields convergence to critical points in high-probability with best-known rates for smooth losses when the gradients only have bounded $\mathfrak{p}$th moments for some $\mathfrak{p}\in(1,2]$. We then consider the case of second-order smooth losses, which to our knowledge have not been studied in this setting, and again obtain high-probability bounds for any $\mathfrak{p}$. Moreover, our results hold for arbitrary smooth norms, in contrast to the typical SGD analysis which requires a Hilbert space norm. Further, we show that after a suitable "burn-in" period, the objective value will monotonically decrease for every iteration until a critical point is identified, which provides intuition behind the popular practice of learning rate "warm-up" and also yields a last-iterate guarantee.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods