High-resolution global irrigation prediction with Sentinel-2 30m data

9 Dec 2020  ·  Weixin, Wu, Sonal Thakkar, Will Hawkins, Puya Vahabi, Alberto Todeschini ·

An accurate and precise understanding of global irrigation usage is crucial for a variety of climate science efforts. Irrigation is highly energy-intensive, and as population growth continues at its current pace, increases in crop need and water usage will have an impact on climate change. Precise irrigation data can help with monitoring water usage and optimizing agricultural yield, particularly in developing countries. Irrigation data, in tandem with precipitation data, can be used to predict water budgets as well as climate and weather modeling. With our research, we produce an irrigation prediction model that combines unsupervised clustering of Normalized Difference Vegetation Index (NDVI) temporal signatures with a precipitation heuristic to label the months that irrigation peaks for each cropland cluster in a given year. We have developed a novel irrigation model and Python package ("Irrigation30") to generate 30m resolution irrigation predictions of cropland worldwide. With a small crowdsourced test set of cropland coordinates and irrigation labels, using a fraction of the resources used by the state-of-the-art NASA-funded GFSAD30 project with irrigation data limited to India and Australia, our model was able to achieve consistency scores in excess of 97\% and an accuracy of 92\% in a small geo-diverse randomly sampled test set.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here