Higher dimensional homodyne filtering for suppression of incidental phase artifacts in multichannel MRI

14 Jan 2015  ·  Joseph Suresh Paul, Uma Krishna Swamy Pillai ·

The aim of this paper is to introduce procedural steps for extension of the 1D homodyne phase correction for k-space truncation in all gradient encoding directions. Compared to the existing method applied to 2D partial k-space, signal losses introduced by the phase correction filter is observed to be minimal for the extended approach. In addition, the modified form of phase correction mitigates Incidental Phase Artifacts (IPA) due to truncation. For parallel imaging with undersampling along phase encode direction, the extended homodyne filtering is shown to be effective for minimizing these artifacts when each of the channel k-spaces are truncated along both phase and frequency encode directions. This is illustrated with 2D partial k-space for flow compensated multichannel Susceptibility Weighted Imaging (SWI). Extension of our method to 3D partial k-space shows improved reconstruction of flow information in phase contrast angiography.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here