Higher-order Pooling of CNN Features via Kernel Linearization for Action Recognition

19 Jan 2017  ·  Anoop Cherian, Piotr Koniusz, Stephen Gould ·

Most successful deep learning algorithms for action recognition extend models designed for image-based tasks such as object recognition to video. Such extensions are typically trained for actions on single video frames or very short clips, and then their predictions from sliding-windows over the video sequence are pooled for recognizing the action at the sequence level. Usually this pooling step uses the first-order statistics of frame-level action predictions. In this paper, we explore the advantages of using higher-order correlations; specifically, we introduce Higher-order Kernel (HOK) descriptors generated from the late fusion of CNN classifier scores from all the frames in a sequence. To generate these descriptors, we use the idea of kernel linearization. Specifically, a similarity kernel matrix, which captures the temporal evolution of deep classifier scores, is first linearized into kernel feature maps. The HOK descriptors are then generated from the higher-order co-occurrences of these feature maps, and are then used as input to a video-level classifier. We provide experiments on two fine-grained action recognition datasets and show that our scheme leads to state-of-the-art results.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here