Higher Order Recurrent Neural Networks

30 Apr 2016  ·  Rohollah Soltani, Hui Jiang ·

In this paper, we study novel neural network structures to better model long term dependency in sequential data. We propose to use more memory units to keep track of more preceding states in recurrent neural networks (RNNs), which are all recurrently fed to the hidden layers as feedback through different weighted paths... By extending the popular recurrent structure in RNNs, we provide the models with better short-term memory mechanism to learn long term dependency in sequences. Analogous to digital filters in signal processing, we call these structures as higher order RNNs (HORNNs). Similar to RNNs, HORNNs can also be learned using the back-propagation through time method. HORNNs are generally applicable to a variety of sequence modelling tasks. In this work, we have examined HORNNs for the language modeling task using two popular data sets, namely the Penn Treebank (PTB) and English text8 data sets. Experimental results have shown that the proposed HORNNs yield the state-of-the-art performance on both data sets, significantly outperforming the regular RNNs as well as the popular LSTMs. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here