Higher-order Weighted Graph Convolutional Networks

11 Nov 2019  ·  Songtao Liu, Lingwei Chen, Hanze Dong, ZiHao Wang, Dinghao Wu, Zengfeng Huang ·

Graph Convolution Network (GCN) has been recognized as one of the most effective graph models for semi-supervised learning, but it extracts merely the first-order or few-order neighborhood information through information propagation, which suffers performance drop-off for deeper structure. Existing approaches that deal with the higher-order neighbors tend to take advantage of adjacency matrix power. In this paper, we assume a seemly trivial condition that the higher-order neighborhood information may be similar to that of the first-order neighbors. Accordingly, we present an unsupervised approach to describe such similarities and learn the weight matrices of higher-order neighbors automatically through Lasso that minimizes the feature loss between the first-order and higher-order neighbors, based on which we formulate the new convolutional filter for GCN to learn the better node representations. Our model, called higher-order weighted GCN(HWGCN), has achieved the state-of-the-art results on a number of node classification tasks over Cora, Citeseer and Pubmed datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods