Hint-based Training for Non-Autoregressive Translation

ICLR 2019 Zhuohan LiDi HeFei TianTao QinLiwei WangTie-Yan Liu

Machine translation is an important real-world application, and neural network-based AutoRegressive Translation (ART) models have achieved very promising accuracy. Due to the unparallelizable nature of the autoregressive factorization, ART models have to generate tokens one by one during decoding and thus suffer from high inference latency... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet