Hit Song Prediction for Pop Music by Siamese CNN with Ranking Loss

30 Oct 2017  ·  Lang-Chi Yu, Yi-Hsuan Yang, Yun-Ning Hung, Yi-An Chen ·

A model for hit song prediction can be used in the pop music industry to identify emerging trends and potential artists or songs before they are marketed to the public. While most previous work formulates hit song prediction as a regression or classification problem, we present in this paper a convolutional neural network (CNN) model that treats it as a ranking problem. Specifically, we use a commercial dataset with daily play-counts to train a multi-objective Siamese CNN model with Euclidean loss and pairwise ranking loss to learn from audio the relative ranking relations among songs. Besides, we devise a number of pair sampling methods according to some empirical observation of the data. Our experiment shows that the proposed model with a sampling method called A/B sampling leads to much higher accuracy in hit song prediction than the baseline regression model. Moreover, we can further improve the accuracy by using a neural attention mechanism to extract the highlights of songs and by using a separate CNN model to offer high-level features of songs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here