Horizontally Scalable Submodular Maximization

31 May 2016  ·  Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, Andreas Krause ·

A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization. Existing approaches for distributed submodular maximization have a critical drawback: The capacity - number of instances that can fit in memory - must grow with the data set size. In practice, while one can provision many machines, the capacity of each machine is limited by physical constraints. We propose a truly scalable approach for distributed submodular maximization under fixed capacity. The proposed framework applies to a broad class of algorithms and constraints and provides theoretical guarantees on the approximation factor for any available capacity. We empirically evaluate the proposed algorithm on a variety of data sets and demonstrate that it achieves performance competitive with the centralized greedy solution.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here