Horseshoe Prior Bayesian Quantile Regression

13 Jun 2020  ·  David Kohns, Tibor Szendrei ·

This paper extends the horseshoe prior of Carvalho et al. (2010) to Bayesian quantile regression (HS-BQR) and provides a fast sampling algorithm for computation in high dimensions. The performance of the proposed HS-BQR is evaluated on Monte Carlo simulations and a high dimensional Growth-at-Risk (GaR) forecasting application for the U.S. The Monte Carlo design considers several sparsity and error structures. Compared to alternative shrinkage priors, the proposed HS-BQR yields better (or at worst similar) performance in coefficient bias and forecast error. The HS-BQR is particularly potent in sparse designs and in estimating extreme quantiles. As expected, the simulations also highlight that identifying quantile specific location and scale effects for individual regressors in dense DGPs requires substantial data. In the GaR application, we forecast tail risks as well as complete forecast densities using the McCracken and Ng (2020) database. Quantile specific and density calibration score functions show that the HS-BQR provides the best performance, especially at short and medium run horizons. The ability to produce well calibrated density forecasts and accurate downside risk measures in large data contexts makes the HS-BQR a promising tool for nowcasting applications and recession modelling.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here