How Does Distilled Data Complexity Impact the Quality and Confidence of Non-Autoregressive Machine Translation?

While non-autoregressive (NAR) models are showing great promise for machine translation, their use is limited by their dependence on knowledge distillation from autoregressive models. To address this issue, we seek to understand why distillation is so effective. Prior work suggests that distilled training data is less complex than manual translations. Based on experiments with the Levenshtein Transformer and the Mask-Predict NAR models on the WMT14 German-English task, this paper shows that different types of complexity have different impacts: while reducing lexical diversity and decreasing reordering complexity both help NAR learn better alignment between source and target, and thus improve translation quality, lexical diversity is the main reason why distillation increases model confidence, which affects the calibration of different NAR models differently.

PDF Abstract Findings (ACL) 2021 PDF Findings (ACL) 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods