How Should Markup Tags Be Translated?

WMT (EMNLP) 2020  ·  Greg Hanneman, Georgiana Dinu ·

The ability of machine translation (MT) models to correctly place markup is crucial to generating high-quality translations of formatted input. This paper compares two commonly used methods of representing markup tags and tests the ability of MT models to learn tag placement via training data augmentation. We study the interactions of tag representation, data augmentation size, tag complexity, and language pair to show the drawbacks and benefits of each method. We construct and release new test sets containing tagged data for three language pairs of varying difficulty.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here