How the Softmax Output is Misleading for Evaluating the Strength of Adversarial Examples

21 Nov 2018  ·  Utku Ozbulak, Wesley De Neve, Arnout Van Messem ·

Even before deep learning architectures became the de facto models for complex computer vision tasks, the softmax function was, given its elegant properties, already used to analyze the predictions of feedforward neural networks. Nowadays, the output of the softmax function is also commonly used to assess the strength of adversarial examples: malicious data points designed to fail machine learning models during the testing phase. However, in this paper, we show that it is possible to generate adversarial examples that take advantage of some properties of the softmax function, leading to undesired outcomes when interpreting the strength of the adversarial examples at hand. Specifically, we argue that the output of the softmax function is a poor indicator when the strength of an adversarial example is analyzed and that this indicator can be easily tricked by already existing methods for adversarial example generation.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.