How to Constrain Your M dwarf II: the mass-luminosity-metallicity relation from 0.075 to 0.70$M_\odot$

16 Nov 2018  ·  Andrew W. Mann, Trent Dupuy, Adam L. Kraus, Eric Gaidos, Megan Ansdell, Michael Ireland, Aaron C. Rizzuto, Chao-Ling Hung, Jason Dittmann, Samuel Factor, Gregory Feiden, Raquel A. Martinez, Dary Ruiz-Rodriguez, Pa Chia Thao ·

The mass-luminosity relation for late-type stars has long been a critical tool for estimating stellar masses. However, there is growing need for both a higher-precision relation and a better understanding of systematic effects (e.g., metallicity). Here we present an empirical relationship between Mks and mass spanning $0.075M_\odot<M<0.70M_\odot$. The relation is derived from 62 nearby binaries, whose orbits we determine using a combination of Keck/NIRC2 imaging, archival adaptive optics data, and literature astrometry. From their orbital parameters, we determine the total mass of each system, with a precision better than 1% in the best cases. We use these total masses, in combination with resolved Ks magnitudes and system parallaxes, to calibrate the mass-Mks relation. The result can be used to determine masses of single stars with a precision of 2-3%, which we confirm by a comparison to dynamical masses from the literature. The precision is limited by scatter around the best-fit relation beyond mass uncertainties, perhaps driven by intrinsic variation in the mass-Mks relation or underestimated measurement errors. We find the effect of [Fe/H] on the mass-Mks relation is likely negligible for metallicities in the Solar neighborhood (0.0+/-2.2% change in mass per dex change in [Fe/H]). This weak effect is consistent with predictions from the Dartmouth Stellar Evolution Database, but inconsistent with those from MESA Isochrones and Stellar Tracks. A sample of binaries with a wider range of abundances will be required to discern the importance of metallicity in extreme populations (e.g., in the Galactic Halo or thick disk).

PDF Abstract

Categories


Solar and Stellar Astrophysics